EXTENDING THE LIMITS OF NMR

SH3 7 kD
P21-ras 21 kD
Pb92 30 kD
EIN-I 40 kD
DHBPS 47 kD

Increasing Spectral Complexity
Increasing Relaxation

Mark Kelly
UCSF
January 29, 2004
Obstacles to NMR Studies of Larger Proteins

- Increased Resonance Degeneracy
 - Complex Spectra

- Increased Relaxation
 - Reduced Sensitivity
 - Limited Resolution
Protein Molecular Weight Limits Spectral Resolution

19 kDa

$\omega = \delta_\text{H}[\text{ppm}] \quad \omega = \delta_\text{H}[\text{ppm}]

Tm=40\text{ms}

47 kDa

$\omega = \delta_\text{H}[\text{ppm}] \quad \omega = \delta_\text{H}[\text{ppm}]

Tm=40\text{ms}
Protein Molecular Weight Limits Spectral Resolution

14 kDa

ω = δC [ppm]

2 1

ω = δH [ppm]

20

15

25

47 kDa

ω = δC [ppm]

20

15

25

UCSF
January 29, 2004
Backbone and Side-Chain Assignment
Collection of Distance Restraints in Large Proteins

- 100% 2H 15N
 - NH-NH NOEs
 - side-chain amide NOEs

- 1H residue-specific
 - NOEs from protonated residues

- 1H methyl-specific
 - NOEs from methyl groups

- random fractional 2H
 - NOEs all residues
$^{1}H,^{14}N$-FYTIV $^{2}H,^{15}N$-X Strategy
15N-Edited NOESY
$^{15}\text{N-Filtered NOESY}$
Advantages of the FYTIV Strategy

- aids assignment of aromatics (F and Y)
- sequential assignments of $X-(F/Y/T/I/V)_n-X$ fragments facilitated
- aids secondary structure assignment
- high propensity for F, Y, T, I, V in β-sheet and in hydrophobic core
- 15N selection/filtering for unambiguous assignment
- Useful long-range NOEs between:
 - F/Y residues and methyl groups
 - sidechains of F, Y, T, I, V residues
E. coli Mutase Sequence

F, Y, T, I, V

1 MNQLLSSFG TFERVENAL AALREGROM VLDDEDRENE GDMFPAETIM

51 TVEQMATTIR HGSGTVCLCI TEDRRKQLDL PMVENNTSA YGTGTVTIE

101 AAEOYTVGS AADRIITTVRA AITADGAKPSD LNRPGTLFPL RAQAGCMTTR

151 GGHTEATIDL MLAGFKPAG VLCELTNDDG TMARAPECE FANKHNMA

201 TLEDLVAYRQ AHERKAS
Preparation 1H-, 14N-FYTIV 2H-, 15N-X Sample

- M9 minimal medium
- 15NH$_4$Cl
- 1H-, 14N-F,Y,T,I,V amino acids
- 100% D$_2$O
- *E. coli* M15/pQE, T5 expression system
Problems for Structure Determination of Large Proteins

- assignment of secondary structure
 - H_N line-width
 - $H_{\overline{\sigma}}$ line-width (dipolar relaxation ^{13}C)
 - ^{15}N, H_N degeneracy

- collection of long range NOEs
 - ^{1}H line-width (dipolar relaxation ^{1}H, ^{13}C)
 - overlap
 - ^{13}C line-width
 - spin diffusion
Comparison of Different Samples

<table>
<thead>
<tr>
<th></th>
<th>$^1H^13C^{15}N$</th>
<th>$100%^2H^{15}N$</th>
<th>$75%^2H^13C^{15}N$</th>
<th>FYTIV $^{15}N-X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>backbone assignment</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>side-chain assignment</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>secondary structure</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>long-range NOEs</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
A SOLUTION: PROTEIN DEUTERATION

Torchia et al., 1988

Protonated

Deuterated

Mark Kelly
UCSF
January 29, 2004
Deuteration Improves Resolution

2D 1H NOESY spectra

Protonated DHBPS

Deuterated DHBPS

Mark Kelly
UCSF
January 29, 2004
(H)C(CCO)NNH with a protein with 12ns 13C
NOE Distance Restraints 12ns

$\tau_c = 12$ nsec

NH/sidechain

NH/NH

0% 2H 50% 2H 75% 2H
Another Solution:
Amino Acid Specific Protonation in a Deuterated Background
Specific Protonation Improves Sensitivity: FYTIVL Pattern (Kelly et al., 1999)
Specific Protonation Improves Resolution: Methyl-\(^1\)H Sample (Goto et al., 1999)

2D \(^{13}\)C HSQC spectra

1H 13C 15N DHBPS

1H(CH3)ILV 2H 13C 15N DHBPS
Methyl-Protonation Reduces Ambiguity In NOESY Expts (Zwahlen et al., 1999)
NMR Restraints from different Samples (p21 ras)

Ras NMR Structure
0.6Å RMSD
101 HN-HN
1171 HN-S/C
1862 SC/SC

$^{13}\text{C}/^{15}\text{N}$ ILV ^{15}N FY
5.0Å RMSD
101 HN-HN (ass-ass)
390 HN-S/C (ass-amb)
231 ILV-ILV (ass-ass)
174 ILV-FY (ass-amb)
26 FY-FY (amb-amb)

$^{13}\text{C}/^{15}\text{N}$ ILV ^{15}N FY
2.0Å RMSD
101 HN-HN (ass-ass)
390 HN-S/C (ass-amb)
431 S/C-S/C (ass-ass)

$^{13}\text{C}/^{15}\text{N}$ ILV ^{15}N FY
1.7Å
NH NOEs to 5Å
As above with 330 HN-HN NOEs

Mark Kelly
UCSF
January 29, 2004
NMRSOLVE

Experimental Conditions
8 hours 2D 13C-HMQC
600 m (5mm-tube) 50M p38
90% H$_2$O; 10% D$_2$O; 20°C